
 Efficient calibration of transient ECU functions 
through system optimization 

 

 

 André Sell, Frank Gutmann, Tobias Gutmann 
 
 
 
 

Abstract  
 
The necessity of the recurring calibration of engine control functions for a large number 
of variants opens up potential for increasing efficiency. In this context, transient func-
tions are moving more into focus due to legislative changes in the form of more dy-
namic certification cycles and the consideration of real driving. Since the well-known 
stationary DoE and MBC methods cannot be used directly for transient calibration 
tasks, methods have already been proposed for automated and efficient processing of 
such tasks. In this paper, some potentials of these methods are pointed out and sug-
gestions for further development are made. These concern the amount of data to pro-
cess and parameters to be optimized, the determinacy of the optimization problem and 
the plausibility of the optimized parameters. 
 
The SGE system optimization method applies these suggestions and addresses the 
potential by automatically calibrating ECU functions based on measurement or mod-
eled data by simultaneously optimizing all calibration parameters. In this way, also 
transient systems can be calibrated efficiently, as the example of an exhaust gas tem-
perature function shows. 
 
 
 

Kurzfassung 
 
Die Notwendigkeit der wiederkehrenden Applikation von Motorsteuerungsfunktionen 
für eine Vielzahl von Varianten eröffnet Potenzial zur Effizienzsteigerung. In diesem 
Zusammenhang rücken transiente Funktionen aufgrund gesetzlicher Änderungen in 
Form von dynamischeren Zertifizierungszyklen und der Berücksichtigung des realen 
Fahrens stärker in den Fokus. Da die bekannten stationären DoE- und MBC-Methoden 
nicht direkt für transiente Applikationsaufgaben eingesetzt werden können, wurden be-
reits Methoden zur automatisierten und effizienten Bearbeitung solcher Aufgaben vor-
geschlagen. In diesem Beitrag werden einige Potenziale dieser Methoden aufgezeigt 
und Vorschläge zur Weiterentwicklung gemacht. Diese betreffen die Menge der zu 
verarbeitenden Daten und zu optimierenden Parameter, die Bestimmtheit des Opti-
mierungsproblems und die Plausibilität der optimierten Parameter. 
 
Der SGE Ansatz der Systemoptimierung wendet diese Vorschläge an und adressiert 
damit das vorhandene Potenzial, indem sie Steuergerätefunktionen basierend auf 
Mess- oder modellierten Daten automatisch durch gleichzeitige Optimierung aller Pa-
rameter appliziert. Auf diese Weise können auch transiente Systeme effizient bearbei-
tet werden, wie das Beispiel einer Abgastemperaturmodells zeigt. 
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1 Introduction 

1.1 Motivation 

The calibration effort of parameters in present vehicle ECUs is growing due to the in-
creasing diversification of drive, vehicle and country variants. In addition, changes in 
legislation in the form of more dynamic certification cycles and the consideration of real 
driving bring the transient behavior of the vehicle, especially with regard to emissions 
and diagnostic functions, more into focus. This further increases the calibration effort, 
since the known stationary DoE and MBC methods cannot be applied [1] and manual 
calibration is very time consuming [2]. Therefore, methods are required to make the 
calibration of transient functions more efficient and accurate in the daily routine of a 
calibration engineer. 

1.2 State of the Art 

Proposals exist for the automated calibration of transient functions [2]. The SGE ap-
proach that does also apply to transient functions is the so-called system optimization. 
It permits the automated calibration of ECU functions by simultaneously optimizing all 
calibration parameters. The aim is to minimize the deviation of the ECU system behav-
ior from a reference behavior [3]. Problems and limitations arising in this context are 
discussed in the following and potentials are pointed out. 
 

2 Challenges and Concepts 

2.1 Large amounts of data to be processed 

Transient control functions contain elements whose behavior is not only determined by 
the current state of the system inputs, but also depends on the previous state - such 
as filters and integrators. Therefore, it is not possible to completely calibrate such sys-
tems by setting combinations of the inputs e.g. according to a DoE plan and measuring 
the outputs stationary. If the dynamic behavior of a control function is to be calibrated, 
time traces of the input and output signals of the system must be applied. This makes 
it necessary to process large amounts of data during optimization - regardless of 
whether these originate from measurements, simulations or a dynamic model. This 
places increased demands on the plausibility of the data and the performance of the 
optimization [2]. One proposed solution is to reduce the time data to scalar describable 
properties (KPI values = "Key Performance Index" values) [1]. However, since these 
are limited to fixed maneuvers, they must be selected very carefully in order to cover 
the relevant operating range. In addition, the optimized calibration must be tested and 
confirmed for an extended operating range. 
 
The time-based data of the input and output signals required for optimization can be 
reduced by converting them from their acquisition or calculation grid to a dynamic grid 
derived from the course of the signals without exceeding a defined deviation. As a 
result, fewer points are placed in stationary phases than in dynamic phases. The ECU 
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function to be optimized may have to be adapted if it was previously calculated in a 
constant grid, for example. Since the grid generation has to be done only once but 
saves runtime in each calculation run of the optimization, a clear overall advantage of 
optimization time results. 
 
The following figure shows an example of the reduction of a signal by more than 80% 
of the points without the deviation from the output signal exceeding 1%. 
 

 
Figure 1: 80% signal reduction with less than 1% deviation 

If further runtime optimizing measures are added, such as the integration of the ECU 
function as a Simulink Host-Based Shared Library, typical calibration tasks such as the 
dynamic exhaust gas temperature model can be optimized overnight, which is usually 
sufficient for the calibration engineer as a typical user. 

2.2 Large number of parameters to be optimized 

Although methods exist to directly map models in the ECU [4], most of the functions to 
be calibrated are traditionally implemented as a combination of maps, curves and sca-
lar parameters. Since the system optimization optimizes all parameters of a function 
simultaneously and curves and maps consist of several to many individual parameters, 
the optimization must handle hundreds to thousands individual parameters. This re-
sults in two problems. On the one hand, the calculation time required for the optimiza-
tion increases and on the other hand, flawed input data cause the optimization to use 
the high number of parameters to minimize the objective function by generating im-
plausible and wavy maps [2]. The latter problem is discussed in the section 2.4. 
 
To compensate the long calculation runtimes that occur, it is proposed to replace the 
parameters with constructs that can be described with fewer parameters, such as pol-
ynomials [2] [5], approximation by individual cells [6] or LoLiMoT networks [7]. All of 
them have in common that restrictions of the form capabilities of the ECU parameters 
are made and thus the behavior of the ECU function cannot be mapped exactly if in-
terpolation grid, incrementation or the interpolation routine deviate. When using poly-
nomial models, another disadvantage is that the expected optimized parameter shape 
must be known in order to determine the polynomial order. Thus the utilization is more 
effortful when new or changed functions are to be calibrated because usually several 
iterative optimizations are necessary before suitable settings were found. 
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Therefore, an algorithm is proposed which allows runtime advantages despite exact 
mapping of the ECU behavior and without prior knowledge. In this procedure called 
initial estimation, similar to the approximation by single cells [6], a map/curve is first 
divided into a smaller number of single surfaces, so that the number of parameters to 
be optimized is reduced. This division is not static, but adapts itself in the course of the 
optimization. As the optimization progresses, the cells are divided repeatedly until, at 
the end of the optimization, the map again corresponds to the ECU state and thus the 
optimization result is not subject to any restrictions. As an example, the following figure 
illustrates the initial reduction of a map from 144 to 16 individual parameters. 

 
Figure 2: Initial estimation map reduction 

The following figure shows the runtime reduction that can be achieved for the function 
of a gasoline engine load detection with five maps. The course of the objective criterion 
of two optimizations can be seen, which differ only in the use of the initial estimation. 
For initial estimation, the 768 individual parameters were reduced to 80 (-90%). In this 
way, the optimization result is completed in 20min instead of 120min runtime (-83%). 
 

 
Figure 3: Optimization performance due to initial estimation feature 
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2.3 Underdetermined optimization task 

The optimization task can be underdetermined if, for example, individual parameters 
exist in the case of maps for which there are no input data points in any of the four 
neighboring map sections. Then this map parameter will not have any influence to the 
objective criterion and therefore cannot be determined in a unique way during optimi-
zation. There are suggestions to consider a penalty term depending on the smooth-
ness in this case [8], which will be dealt with in section 2.4. 
 
There is also a common case of underdeterminedness when parameters of a function 
are summed or multiplied and there is an infinite number of value combinations that 
produce the same result. As described in [2], this case can be made unique by con-
straints of the optimization. In the following example of determining the optimal ignition 
angle of a torque model as the sum of two parameters, the lambda correction in 
CURVE_ZWOPTLAM for lambda 1, for example, can be set to zero. 
 

 
Figure 4: Underdetermined optimization task 

2.4 Smoothness / plausibility of the optimized parameters 

An important criterion for the evaluation of the optimization, besides the accuracy, is 
the plausibility and smoothness of the resulting parameters. Due to an underdeter-
mined optimization task or flawed measurement data, the results of the optimization 
can be unsatisfactory and considerable postprocessing is required [2]. Two ap-
proaches exist here. On the one hand the mentioned reduction of the parameters to 
e.g. polynomial models leads to restrictions of the degrees of freedom, so that the 
results are necessarily smooth - however with the discussed disadvantages. On the 
other hand, smoothness in the form of constraints or penalty terms [8] can be consid-
ered during optimization. 
 
Constraints limit the permissible gradients and curvatures. Within these limits, how-
ever, they do not influence the optimization, so that the result will not be smoother than 
these limits. In other words, it is very difficult for the user to define these limits in such 
a way that they provide plausible smooth results without worsening the accuracy to an 
undesirable extent. Similarly is behaves with the quantitative adjustment of penalty 
terms to take smoothness into account. These always deteriorate the result of the op-
timization and also require careful tuning. 
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Both smoothness criteria as a constraint and a penalty term must be individually 
adapted to each parameter to be optimized if the shapes of the parameters significantly 
differ. They also strongly depend on the quality of the data for the input and output 
signals. Flawed data requires stronger smoothness criteria than error-free data. Expe-
rience has shown that both methods require an iterative adjustment over several opti-
mizations, which eliminates part of the efficiency gain through optimization. 
 
An additional problem of penalty terms is that they are also applied to parameter sec-
tions for which no data is available. Since in these sections the parameter values have 
no influence on the optimization result, these sections will usually be wavy and implau-
sible after optimization [2]. If one then applies a penalty term that evaluates the smooth-
ness of the entire parameter as a whole, the smoothing of the underdetermined sec-
tions will unnecessarily worsen the optimization result, since the determined sections 
will also be smoothed at cost of the objective. 
 
As already mentioned in [8], it is proposed not to consider a smoothness criterion as a 
penalty term but to use it as a further criterion for optimization. This then becomes a 
multi-criteria optimization and avoids the problem of worsening of the result due to the 
smoothing of underdetermined sections. However, there is still a need to adjust the 
weighting of the smoothness criteria of the individual parameters. 
 
As part of our system optimization, we have developed a procedure for taking smooth-
ness into account that does not require manual adjustment. The optimization algorithm 
does not consider the smoothness directly. Instead parallel to the optimization, a 
smoothing algorithm operates, which considers all parameters simultaneously, analo-
gous to the optimization, and minimizes the gradient and curvature of the parameters 
using a criterion similar to [8]. It is limited by a maximum permissible worsening of the 
objective function caused by the smoothing. Optimization and smoothing algorithms 
are regularly exchanging data and integrate the respective progress. What's new is 
that the smoothness is not used directly as a penalty or constraint, but only the wors-
ening of the objective function caused by the smoothing is taken into account. 
 
There are some advantages to this approach. On the one hand, no manual parame-
terization of a smoothing criterion is necessary. Each parameter is smoothed individu-
ally up to the permitted threshold of the objective function. Thus, sections where only 
little error occurs due to smoothing (e.g. overdetermined areas due to multiple data) 
are strongly smoothed, while other sections are only slightly adjusted if much error 
would occur due to smoothing. Underdetermined sections are smoothed even com-
pletely. Furthermore the smoothing can compensate roughness between the parame-
ters by the simultaneous processing of all parameters. This is very relevant when op-
timizing underdetermined functions, which contain multiplication or summation (see 
section 2.3). In such sections of the parameters that are not defined by limits, large 
smoothing advances without loss of quality are usually possible, since any number of 
combinations of a multiplication and sum provide the same result as described above. 
 
Since the smoothing algorithm evaluates the objective function, this procedure results 
in an additional runtime compared to pure optimization without considering smooth-
ness. However, in our experience, this procedure supports a plausible progress of the 
optimization and avoids local optima. In addition, the increase in runtime is within a 
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range that allows overnight processing for typical calibration tasks, which is usually 
sufficient for a calibration engineer as a typical user. 
 
As part of the system optimization, the user is provided with a comprehensive graphical 
user interface for postprocessing after completion of the described combined optimi-
zation and smoothing. There it is possible to perform manual or automatic postpro-
cessing. The time related output of the objective function is available for comparison 
of all settings at any time. The smoothing algorithm already used during optimization 
is also available. In postprocessing, the constraint error threshold is adjustable which 
enables the user to conveniently weight accuracy and smoothness. This is a great 
advantage especially for flawed data and is much easier to handle than making fixed 
adjustments at the pre-processing of the optimization. 
 

3 Application example 

3.1 Calibration of a Transient Exhaust Temperature Function 

The use of the system optimization with the features described before is explained now 
using a typical ECU function of an exhaust gas temperature model, which is somewhat 
outdated. Although there are more modern functions for mapping the physical behav-
ior, this is a good example of a typical work package of a calibration engineer who has 
to work on existing functions that cannot completely map the physical behavior.  
 
The function is illustrated in the following figures. It maps the gas temperature before 
the catalyst and the material temperature of the catalyst depending on 9 input signals. 
In a first step the stationary exhaust gas temperature before catalyst is calculated. 
Afterward the transient behavior before catalyst is applied and finally the exothermic 
and transient behavior of the catalyst is modeled. 
 

 
Figure 5: Stationary part of the ECU function calibrate 
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Figure 6: Transient part of the ECU function calibrate 

 

Time-based measurement data containing all input signals and the two measured tem-
peratures - a total of 30000 data points - are available as a reference. The data is 
derived from chassis dynamometer measurements and thus allows the calibration of 
parameters that are depending on the input signals being varied during data recording. 
These are 6 maps, curves and scalars consisting of 142 single parameters. Further 
parameters describing the ignition angle and lambda dependence were not varied in 
the measurements and were therefore taken from an existing dataset, which was de-
termined in advance on the engine test bench. 

The objective criterion was implemented by integrating a Simulink Host-Based Shared 
Library of the ECU function and calculating the deviation from the reference data for 
both temperatures. Since a certain degree of temperature deviation is less relevant, a 
final deviation weighting has been introduced to place more emphasis on minimizing 
high deviations.  

Here the user has all options to apply his experiences and priorities in order to guide 
the optimization to his desired direction. This allows to define a compromise if an ECU 
function cannot exactly map the physical behavior. 

The resulting signal is converted to a scalar quality criterion by the optimization. The 
calibration parameters are adjusted in such a way that this criterion is minimized.  
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Figure 7: Objective function 

For this function the optimization needs 2 hours of computing time on a standard com-
puter. 

The postprocessing takes about 15 minutes. As described, the user can view the re-
sults of the optimization in postprocessing and, if necessary, adjust and further smooth 
them. Graphically guided, a continuous selection of a state between the raw result of 
the optimization and a very smooth variant with a significant increase of constraint error 
is available as well as manual editing and data exchange with calibration data files. 
This enables a comparison with existing calibrations. Afterwards the parameters can 
be transferred directly into the ECU. See the following figures for the optimized cali-
bration parameters of the exhaust gas temperature function after postprocessing. 
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Figure 8: Calibration parameters after postprocessing 

During postprocessing, the time-related objective function output as well as input and 
interim signals are always available for a comparison of all variants in a so called sys-
tem signal view. In this way, the effects of postprocessing and smoothing can be eval-
uated in relation to the time data and thus the actual deviations of the properties to be 
optimized. 
 

 
Figure 9: System Signal View – measured signals, optimized and smoothed result 
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As you can see from the previous illustration, this simple ECU function provides a good 
representation of the physical behavior with plausible shapes of the parameters to be 
optimized. The optimized signals (*_opt) map the measured ones well and there is only 
little deterioration by the postprocessing (*_smooth). Only at the beginning of the 
measurement during warm-up there are relevant deviations, since the function does 
not consider the temperature as a input variable. 

4 Summary 

In this paper some potentials of the already known methods for automated calibration 
of transient ECU functions were pointed out and suggestions for further development 
are made.  
 
Transient control functions must be calibrated based on time related data of the input 
and output signals. This makes it necessary to process large amounts of data, which 
reduces the performance of the optimization. To avoid some limitations of the known 
„Key Performance Index" approach [1], it is proposed to reduce the time-based data to 
a dynamic grid derived from the course of the signals without exceeding a defined 
deviation. The reduced amount of data results in an advantage of optimization time 
without significant deviation of the optimization result. 
 
Traditional approaches implement ECU functions as a combination of maps and 
curves consisting of several hundred to thousand individual parameters. This results 
in a significant performance loss of the optimization and in case of flawed data also to 
implausible and wavy parameter shapes. Derived from existing approaches to reduce 
maps and curves to constructs that can be described with fewer individual parameters, 
a new dynamic reduction mechanism called initial estimation is proposed to avoid the 
drawbacks resulting from the necessity of prior knowledge and a modified implemen-
tation of the ECU function.  
 
To ensure plausible and smooth shapes of the parameters to optimize even for under-
determined optimization tasks and flawed measurement data, approaches already ex-
ist to use smoothness criteria in the form of optimization constraints or penalty terms 
in the objective function. This results in some disadvantages for the optimization and 
usually requires an iterative adjustment, which eliminates part of the efficiency gain 
through optimization. Therefore, a new proposal was made for considering smooth-
ness without the need for manual adjustment. In parallel to the optimization, a smooth-
ing algorithm is operating that does not influence the optimization through a penalty or 
constraint, but only regards the worsening of the objective function caused by the 
smoothing. In this way, an individual smoothing of the parameters is made possible 
based on the objective and no assumptions about the shape of the parameters are 
required. The capabilities of smoothing are further enhanced by the options available 
during postprocessing. 
 
Finally, the suggestions were applied to the automated calibration of an exhaust gas 
temperature function resulting in a good representation of the physical behavior with 
plausible shapes of the parameters to be optimized, which is supported by extensive 
and comfortable features during postprocessing for influencing and evaluating the re-
sult.  
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